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The surface properties of a weakly coupled classical one-component plasma of 
finite size are calculated exactly within the Poisson-Boltzmann (PB) 
approximation scheme. It is found that the ion density profile and the surface 
energy for a spherical system show strong size dependence. The surface energy 
also strongly depends on the position of the hard wall introduced for achieving 
an appropriate equilibrium ion configuration. These results indicate that the 
recent Monte Carlo simulation data for a spherical system must be interpreted, 
at least in the weak-coupling regime, as including substantial size effects and 
cannot be directly compared with the theoretical calculations for the planar sur- 
face. For a stab, on the other hand, such size effects are found to be very small if 
the hard wall is placed at sufficiently distant position from the surface. The 
dominant contribution to the surface energy which is omitted in the PB 
approximation is also estimated by the perturbation calculations. 

KEY WORDS: Classical one-component plasma; surface properties; density- 
gradient expansion; Poisson-Boltzmann approximation; Monte Carlo 
simulations. 

1. I N T R O D U C T I O N  

The classical one -componen t  p lasma (OCP)  is a system of point- l ike 

charged particles (which we call ions) in a rigid neutral iz ing charge 

background.  It is the simplest model  of Cou lo mb  systems but  provides a 
useful starting point  for unders tand ing  real systems such as l iquid metals 
and  mol ten  salts. The bulk  properties of the O C P  are now well established 

for a wide range of the coupl ing parameter  by a n u m b e r  of theoretical and  
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numerical simulation studies. (11 Recently, the surface properties of the OCP 
have also received increasing theoretical attention (2 6) and Monte Carlo 
(MC) simulation data are now available. (7'8~ There also have been some 
attempts to use the OCP as a reference system in the theory of surface 
properties of liquid metals. ~ 11) 

In this paper we are concerned witi~ the surface properties of a weakly 
coupled OCP. The density functional formalism provides a useful means of 
studying inhomogeneous systems (12'13/and the density-gradient expansion, 
one of approximation schemes in this formalism, has been developed for 
the O C P .  (5'9'14) Recently, Rosinberg et  al. (15) have argued that the square- 
gradient approximation is inadequate for calculating the surface properties 
of the OCP even at F =  1, where /~ is the bulk plasma parameter. Their 
argument is based on the serious discrepancy which has been found 
between their variational calculations and the MC results for the surface 
energy. We have examined this problem raised by Rosinberget al. and 
found that two points are overlooked in their argument. (16) The first point 
is that the coefficient of the square-gradient term used by them in their 
calculations is not good. In fact, we have shown that part of the dis- 
crepancy can be removed for a system of large F, in which the gradient 
term plays an important role, by incorporating an improved coefficient. 
The second point is that the influence of the finite size on the surface 
properties could be substantial in the MC simulation for a spherical 
system. Our variational calculations for a spherical system have actually 
predicted strong size dependence of the surface properties at F =  1. (16) 
Ballone eta/. (17) have also discussed the influence of the finite size on the 
interracial density profile in the presence of an impenetrable wall. 

The purpose of this paper is to reexamine such a size effect more 
rigorously without relying on the variational method. For this purpose we 
employ the Poisson-Boltzmann (PB) approximation scheme which should 
be valid in the weak-coupling limit and may be adequate for calculating 
surface properties of the OCP of small F. This approximation scheme has 
already been applied to the planar surface (15) and the present work is its 
generalization to a finite system. Recently, Alastuey (18) has also used the 
PB approximation together with other higher-order theories for calculating 
the interracial density profile of the two-dimensional OCP. He has found 
that even this crudest approximation produces reasonable results for 
systems with soft wall, the free surface being a typical example. However, it 
should be noted that the PB approximation is too crude to be used for 
quantitative purposes in the strong-coupling regime (F>  1). 

We consider two types of finite systems: One is a spherical system, for 
which MC simulations have been performed, (7'8) and the other is a slab 
with infinite extent in two dimensions. In the next section we derive simple 
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expressions for the surface free energy and surface energy of these systems 
within the PB approximation scheme. These expressions are ready for 
direct comparisons with those obtained for the planar surface. (15) The 
results of calculations for the surface density profile and surface energy are 
presented and compared with the MC simulation results in Section 3. In 
this section the contribution to the surface energy which is omitted in the 
PB approximation is also estimated within the local approximation (i.e., 
improved PB approximation). Concluding remarks are given in the final 
section. 

2. S U R F A C E  P R O P E R T I E S  IN T H E  P O I S S O N - B O L T Z M A N N  
A P P R O X I M A T I O N  

We consider a system of ions with charge Ze embedded in a non- 
uniform neutralizing charge background of density -en(r).  The relevant 
quantity in the density functional formalism is the thermodynamic 
potential. (12'13~ It is the unique functional of the ion density p(r) and may 
be written as 

e; f ~ 2 [ p ] = G [ p ] + ~  d r [ Z p ( r ) - n ( r ) ] ~ b ( r ) - #  drp(r) (l) 

where G[p] is the non-Coulombic part of the free energy functional, ~b(r) is 
the electrostatic potential 

~b(r) = e dr' Zp(r') - n(r') (2) 
Ir-r'I 

and ~t is the chemical potential. The equilibrium ion density may be deter- 
mined by the stationary condition of Q[p] ,  or the Euler-Lagrange 
equation 

an[p] ,~o[p] 
bp(r) 6p(r) 

- - +  Zeq~(r)-/~=0 (3) 

Here we consider the PB approximation scheme studied by 
Rosinberget al. (15) for the planar surface. This approximation consists of 
taking G[p] to be the one which is valid for a noninteracting system, ~ 
i.e., 

G[p] = f dr go(p(r)) (4) 
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where 

go(P) = pk~ T[ln p - 1 - ln(Mke T/2~h2) 3/2 ] (5) 

k B and M being the Boltzmann constant and the ion mass, respectively. 
Equation (4) is nothing but the local approximation and may be adequate 
for surface calculations at small F where the gradient term is not 
imp ortant.~5"lS'~6) go(P) in Eq.(5) is the free energy density of a 
homogeneous noninteracting gas of density p and it can be viewed as the 
crucial approximation. In this approximation scheme the Euler-Lagrange 
equation can be written 

# = #o(p(r)) + Zer (6) 

where go is the intrinsic chemical potential given by 

#o(P ) = dgo(p )~ = k B T I ln p - in \{ Mk B2~h2 jT~ 3/2~J (7) 

No further approximation is made and the surface ion density profile 
and the surface energy are calculated exactly within a numerical accuracy. 
However, it should be noted that, strictly speaking, the formulation in the 
above is valid only in the thermodynamic limit and any fluctuation 
associated with the finiteness of a system will not be taken into account. In 
the following two sections we consider two situations in which size effects 
could be appreciable. 

2.1. Spherical  System 

Consider a system of ions confined to a spherical volume of radius R~. 
The compensating charge background density is uniform in a spherical 
volume of radius Ro (Ro < R~), i.e., 

{~ (r < Ro) 
n( r )=  (r > Ro) (8) 

The need for introducing a hard wall in a finite system has been discussed 
by Badiali et al.(7): For a system consisting of a finite number of particles, 
the most probable configuration of the system would be the one in which 
all particles are separated from one another by an infinite distance. 

For a spherically symmetric system we immediately obtain from (6) 

p(r) = p(0) exp[- - ZeO(r)/kB T] (9) 
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where the origin of ~b(r) is chosen such that ~b(0) = 0. Similarly, the Poisson 
equation may be written 

d [ 2 d~(r) l  Yr L r T J  = - - 4 ~ e r 2 E Z p ( r )  - -  n ( r ) ]  ( I 0 )  

From (9) and (10) we obtain the following differential equation for p(r): 

d [r2P'(r)l_ Ze d [ d4lr) 1 
L -piTYj k ~ d r  ,.2 dr 3 

4~Ze 2 
k ~ T  

Equation (11) is the Poisson Boltzmann 
spherical system. In terms of the reduced 
4~#(Ze)2/k~T, Eq. (11) is written 

d [ P'(")I U2 #-~3 ~=[~(.)- O(~o-.)] 

- - -  r2[ Zp(r) - n(r)] (11) 

equation generalized to a 
variable u=~r,  where ~2= 

(12) 

where ~(u)=  p(u)/~, Zfi = r~ and u0 = tcRo. This equation cannot be solved 
analytically and the numerical method we use will be described in the next 
section. 

Next we consider the excess free energy per unit surface area (which 
we simply call surface free energy) defined ny 

y=4~oo  dr [go (p ( r ) ) -go (# )O(Ro- r ) ]  

e ," t 

=7o+7es (13) 

For a system which satisfies the overall charge neutrality condition, we 
may set go(p)=pkBTln  p in Eq. (13). Then we have 

= kB TRo 2 f : l  dr r2Ep(r) lnp(r) - fi In #O(R o F)] 70 

= kB TRo 2 f:~ dr r2p(r) ln[p(r)/p l 

~k~ TRO -2 t m dr r 2 ln[p(r)/~] - 27e S (14) 
Jo 
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where we have used the charge neutrality condition on the second line and 
Eq. (9) on the third line. The electrostatic term 7es can be calculated as in 
the following by using the Poisson equation and by integrating by part: 

1 1 f ~  d [rsd(a(r-)l 
7os - 4~ 2R 2 dr ~(r) -~r L dr J 

1 1  ;o 1 
- 4~ 2R 2 dr r 2 k dr J 

1 ( k B T ~  2 1 rp'(r)]2 
=47\ - -Z -e )  ~ f~  ' dr r2 Lp(r)J  (15) 

where we have used the boundary condition ~b'(R1)= 0, which is a con- 
sequence of the charge neutrality condition within a sphere of radius R~ 
and can be proved by integrating Eq. (10) from 0 to R~. 

From (14) and (15) we have the following expression for ? written in 
terms of the reduced quantities: 

{1 _ 1 (-~ F~'(u)q2 ~ 
7=~#kBT(3 ; ) l / 2  ~f~ ~ 2ueOo duu2 L/t(u)J J (16) 

where ,P is the plasma parameter defined by F =  (Ze)2/~kB T, 0~ = (3/4rc#)~/3 
and ul = KR1. From Eq. (12) we can derive the relation (the derivation is 
given in Appendix A) 

1 ~ f i ' ( u ) ]2_3  Cu0 
fo ~ du u 2 - du u 2 In/~(u) 

2u~ k ~(u) J u 2:o 

-- u o [ l + l n ~ ( u o ) ] + ( u l ~ 2 , 1 ~ ( U l )  (17) 
\Uo/ 

Using (17) in (16) we have the final expression for 7: 

1 2fo0 
= ( g f i k B T ( 3 r ) l / 2  - u 2 Jo du .2 In r 7 

q- u0[1 + ln p ( u o ) ] - - ( U l ) 2 u l p ( U l )  (18) 

Note that ? is expressed in terms of the ion density in the region u ~< Uo and 
at the hard wall. 
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The excess internal energy per unit surface area (which we simply call 
surface energy) can be calculated as in the following: 

07 
gs=~- -  T - ~ = ~ e  s 

= apkBT(3~)l/~ 2 2 .  2 du  1./2 k ~ ( u )  J 

l { - ~ f f ~  
=~pker (BFi l / 2  

-uo[l+ln~(uo)]+[uJ}2ul~(u~) \ ) (19) 
\Uo/ J 

At this point it is interesting to compare the present results for 7 and 
U s with those obtained for a planar surface. (~5) In the limit Uo ~ oo with 
u~/uo fixed at a finite value, Eq. (18) becomes 

{jo } 
1 - 2  d u l n ~ ( u ) +  lim u o [ l + l n f i ( 0 ) ]  (20) 7 = ~ k B  T (3F) 1/2 ~ u0 ~ 

where the origin of the coordinate is taken at the surface. Note that the 
asymptotic behavior of ~(u) at large u is given by ~5(u)oc u -2 and hence 
UxtS(ul) = 0  in the limit u 1 ~ oo. Equation (20) is compared with the result 
of Rosinberg et al. (Is~ 

"/= ~r 8 T 2 r 40 du In ~(u) (21) 

The comparison between (20) and (21) implies 

f 
o 

lim Uo[-1 + l n  ~(0)] = 4  du In fS(u) (22) 

o r  

,(4A ) 
lim ~ ( 0 ) = -  1 + - - + - . .  (e=2.718...) (23) 

uo~ eo e b/0 

where 

f 
0 

A = du in ~8(u) = --1.08312 (24) 
oo  
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This value of A is compared with - 1.08206 obtained by Rosinberg et al. (~5~ 
by an approximate method. The result of Eq. (24) was obtained by using a 
numerical solution of Eq. (12) in the limit Uo --+ oe and found to be very 
accurate. We have confirmed that our numerical solutions/5(u) for large u0 
really satisfy the tendency given by Eq. (23). 

2.2. System of Slab Geometry  

In this section we consider a system in which the background density 
is uniform in a slab with infinite extent in two dimensions and given by 

n(z)={~ (Izl < L o ) ( l z ]  >Lo )  (25) 

For  this system there is no need of introducing a hard wall to achieve an 
equilibrium configuration in which the ion density is finite in the region of 
the background. As far as we know no numerical simulation for a slab has 
yet appeared in the literature. In such a simulation it would be practical to 
introduce a hard wall for avoiding a long-range tail of the ion density p(z). 
Here we also introduce a hard wall at Izl = L1 (L1 > Lo), which enables us 
to compare the present results with such a numerical simulation. 

For  a slab we obtain from (6) and (7) 

p(z)  = p(0) exp [ - Ze(~(z)/ke T] (26) 

where the origin of ~b(z) is taken at z = 0 ,  i.e., ~b(0)=0. The Poisson 
equation for a slab may be written 

dZ~b(z) = - 4 ~ e [ Z p ( z )  - n(z)] (27) 
dz 2 

From (26) and (27) we obtain the Poisson-Boltzmann equation 

d Fy(.) ] 
L ~(u)_l =~(u)-O(uo-lul) (28) 

where u = ~cz and u o = ~cL 0. Note that the form of Eq. (28) is the same as 
that for a semi-infinite system with planar surface. (5'15) 

We are interested in the solution which satisfies the physically accep- 
table boundary condition ~ ' (0 )=  0. Such a solution satisfies the condition 
~'(ul)  = 0, which is again a consequence of the charge neutrality condition 
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and can be proved by integrating Eq. (28) from 0 to u~, Note that for 
]u] > u0 we have an analytic solution to (28), 

~(u)-  
([ur-uo+bo) 2 

Ju] > Uo) (29) 

where bo is a constant which must be determined by the charge neutrality 
condition. However, this solution does not satisfy the required boundary 
condition (fi ' (ul)=0) except in the limit L o ~  Go (with L1/Lo fixed at a 
finite value). This limiting case corresponds to a semi-infinite system with 
planar surface in the absence of a hard wall, for which bo=(2e) 1/2 
(e = 2.718...). (5,15) 

Next we consider the surface free energy defined by 

1 rL~ 
? =-2 J|-c, dz[g~ - go(P) O(Lo - fzl )] 

efLl dzEZp(z) - n(z)] ~b(z) (30) 
+ 4 -L, 

Using techniques similar to those in Section 2.1, Eq. (30) can be reduced to 

{ ff~ 7 = s T(3/~) - 1/2 2 (31) 

for the ion density which satisfies the boundary conditions y ( 0 ) =  0 and 
~'(ul) = 0 (which is equivalent to the charge neutrality condition), where 
ul = KL~. Similarly, the expression for the surface energy is obtained as 

Us=~fik~T(3P) l /2{-  f f~ (32) 

The comparison of Eq. (31) with Eq. (21) for the planar surface implies 

lira Uo[1 +ln~(u0)]  = 0  (33) 

We have confirmed that our numerical solutions t~(u) for large Uo really 
satisfy the tendency given by Eq. (33) (see next section). 

3. R E S U L T S  OF C A L C U L A T I O N S  

We first show the results of calculations for a spherical system. 
Equation (12) was solved numerically by the Runge-Kutta-Gill method by 
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starting from the initial values of r and y ( u )  well inside the sphere, 
where fi(u) can be well approximated  by the asymptotic form given by 

r = 1 - b exp[fl(u - Uo)] (u < u0) (34) 

This functional form is very accurate for a system which is not too small 
(i.e., Ro/~ > 6). By inserting Eq. (34) into (12) we have a relation between b 
and fl, so that one of these parameter  can be eliminated. The remaining 
parameter  then uniquely determines the initial values fi(u) and y(u) .  By 
varying this parameter  we have searched for the solution which satisfies the 
overall charge neutrality condition. We have checked the internal con- 
sistency or the numerical accuracy by confirming that the solution #(u) 
obtained in this way actually satisfies the required boundary condition 
r which is equivalent to the charge neutrality condition (see 
Appendix A). 

Figure 1 shows the calculated ion density profiles at F =  1 and 
RJRo = 4  as well as the MC result. The theoretical #(r) for Ro/~ = 6.903 
(full curve) is in good agreement with the corresponding MC result(v) in 
the surface region, although theoretical #(r) approaches to the bulk value 
more slowly than the MC result. The influence of the finite size on #(r) is 

I r'=1 (R~/Ro = 4 ) 

�9 :.-<, 

-,,~-,',,\. 

- - 2  -1  0 1 2 
Jr- Ro}/6 

Fig. 1. The size dependence of the surface density profile for a spherical system at F= 1 and 
R1/R o = 4. Filled circles are the MC simulation data for RUg = 6.903J 7) Curves are the present 
results in the PB approximation: Full curve, Ro/~= 6.903; dashed curve, Ro/~= 20; chain 
curve, Ro/~ = of (planar surface). 
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apprec iab le  even for a very large system. In  fact, the spher ica l  system of 
Ro/~=20,  which conta ins  a b o u t  8000ions ,  is still no t  large enough  to 
p roduce  the dens i ty  profile for the p l ana r  surface. 

F igure  2 shows the size dependence  of  the ca lcu la ted  surface energy U, 
for F =  1 a long  with the M C  results.  (7) To see the influence of a ha rd  wall 
i n t roduced  for ensur ing an  a p p r o p r i a t e  equ i l ib r ium ion conf igura t ion ,  the 
results for three different values of  R1/R o are  shown in this figure. No te  that  

the p l a n a r  surface in the absence of a ha rd  wall  co r r e sponds  to the l imit  
R o ~  oe with R1/R o fixed at  a finite value. All these results  in the PB 
a p p r o x i m a t i o n  (full curves in Fig. 2) ex t r apo la t e  qui te  well to the l imit ing 
value U~/(~kBT= 1.08312/(3F) ~/2 for the p l a n a r  surface: W e  have actual ly  
ca lcu la ted  U~ up to Ro/~ = 100. The  present  result  for R~/Ro = 4 (curve a in 

50 20 R ~  10 8 6 
2.0 ~ i ) i ) = I 

U s  

ap r 
1.5 

1.0 

0.5 

, . ~  0 0 
/ 

/ 
f 

J 
/ 

Y 
I I I 

0 0 .05  0.10 0.15 0.20 
(Ro/a)q 

Fig. 2. The size dependence of the surface energy for a spherical system at F =  1. Full curves 
are the present results in the PB approximation: Curve a, Rt/R o = 4; curve b, R1/R o = 3; cur- 
ve c, R1/R o = 2. Dashed curve is the result for R 1 / R  o = 4 in the improved PB approximation 
Eincluding the correction term given by Eq. (37)]. Open circles are the MC results for 
R1/R o = 4. (vl Filled circle is the result of a variational calculation for the planar surface in the 
square-gradient approximation.{ 16) 

822/41,'1-2-19 
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Fig. 2) is nearly saturated for Ro/~ < 10 and in qualitative agreement with 
the corresponding MC results, although theoretical values are about 20% 
smaller than the MC results. 

The PB approximation is probably not a very good approximation for 
the purpose of calculating the surface energy even for r = 1. In the weak- 
coupling regime this approximation scheme may be much improved by 
using the correct free energy density go(P) in Eq. (4). Alastuey (18) has used 
this improved PB approximation for calculating the surface density profile 
of the two-dimensional OCP. In the improved PB approximation we have 
an extra contribution to the surface free energy given by 

1 (, 
A? = 4 ~  ~ J dr[g~)X(p(r))  - g~)X(tT) O(R o - r) ]  (35) 

where g~X(p) is the excess free energy density of a uniform OCP of density 
p. In the weak-coupling regime ( F <  1) we have fitted g~X(p) to the form (16) 

g~X(p ) = pk ~ T( cq F + c~2 F 5/4 + c%F 3/2) (36) 

where cq=0.39327, c~2=-1.11375, and c~3=0.28419. The corresponding 
contribution to the surface energy is then given by 

A U, = A 7 - T •A? 

= ~ p k N r  1__ 1 foo du b/2p(U) {~F[#(u) w3- 1] 
(3F)I/2 ug J0 

s } +-~ o~2Fs/4[~(u) s / l z -  1] +~  c~3r3/a[f(u) w2-  1] (37) 

where we have used the charge neutrality condition and F(u) = Pr 1/3. 
Noting that the PB approximation reproduces the density profile 

rather satisfactory (Fig. 1), we have estimated A Us by using the density 
profiles obtained in that approximation. The agreement between the 
calculated and MC results is improved by taking into account this con- 
tribution (dashed curve in Fig. 2). The discrepancy still remaining between 
the improved PB and MC results is probably due to the present pertur- 
bation approach. As we have noted in the above, the ion density obtained 
in the PB approximation approaches to the bulk value more slowly than 
the MC result (Fig. 1). Such a density profile leads to an overestimation of 
the surface energy. For comparisons, we have also shown in Fig. 2 the 
result of the variational calculation for the planar surface, (~6) which falls 
between the PB and improved PB results. 
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Next we proceed to the results of calculations for a slab. For small Ro 
(R0/~< 5) Eq. (28) can be solved numerically by starting from the initial 
values of t~(u) and ~'(u) at u = 0: fi'(0) is set equal to zero as is required 
and ~(0) is treated as the parameter. By varying ~(0) we have searched for 
the solution which satisfies the overall charge neutrality condition. For 
large R o (Ro/c7 > 5) it is difficult to solve Eq. (28) by the above method. For 
such cases we have used the asymptotic form given by Eq. (34) to deter- 
mine the initial values well inside from the surface. We have confirmed that 
the solutions obtained in these ways satisfy the condition ~ ' (Ul)=0 and 
show the tendency given by Eq. (33). 

In the absence of a hard wall (L1/L o = oo) even the ion density profile 
for a very thin slab with Lo/~ = 3 is hardly distinguishable from that for the 
limiting planar surface (Lo/~ = oo). In the presence of a hard wall ~(u) is 
raised in the entire region as the consequence of the charge neutrality c o n -  

1.0 

Us 
a/5 kBT 

0.8 

0.6 

20 10 L~ 5 4 3 2.5 
I I I I I 

0.4 

b 

0 0.2 1 0.3 0.4 
(Lo/fi l- 

Fig. 3. The thickness dependence of the surface energy for a slab at F =  1. Full curves are the 
present results in the PB approximation:  Curve a, LI /Lo= oo (no hard wall); curve b, 
L1/Lo= 10; curve c, L j L o  = 5; curve d, L t / L  o = 2. Dashed curve is the result for L1/L o = 5 
(corresponding to the curve c) in the improved PB approximation. 

0.2 

I I I 
0.1 
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dition, but its amount is not appreciable if the hard wall is sufficiently dis- 
tant from the surface of the charge background. 

The results of calculations for the surface energy U, are summarized in 
Fig. 3. In the absence of a hard wall (LI/Lo = or) calculated values of U, 
show virtually no size dependence. The surface energy is lowered if the hard 
wall is introduced, but its influence on Us can be reduced to a negligible 
order by placing it at a sufficiently distant position from the surface 
(typically, L1/Lo> 10). The result of the perturbation calculation in the 
improved PB approximation is also shown in Fig. 3 (dashed curve). These 
results for a slab might be characteristic, to some degree, to the 
approximation schemes employed in our calculations, but the qualitative 
features predicted by these calculations are expected to be real ones in the 
weak-coupling regime. As far as we are aware, no numerical simulation for 
a slab has appeared in the literature which can be compared with the 
present calculations. 

4. CONCLUSIONS 

The recent MC simulations for the OCP surface (7'8) have raised a 
serious question about the usefulness of the currently used density 
functional theory, one of useful means of studying inhomogeneous 
systems. (15) However, as we have already pointed out, (16) the influence of 
the finite size on the surface properties could be substantial in a finite 
system and it would be essential to take into account such an effect when 
one compares theories for the planar surface with the MC results for a 
finite system. In this paper we have investigated this problem more 
rigorously by performing exact calculations for the surface properties of 
finite systems within the PB approximation scheme. We have also perfor- 
med perturbation calculations within the improved PB approximation to 
estimate the contribution to the surface energy which is omitted in the PB 
approximation. 

We have shown that the calculated surface properties for a spherical 
system (Ro/~ < 10) are quite different from those for the planar surface and 
are qualitatively in good agreement with the MC results (Figs. 1 and 2). 
We have also found that the surface energy strongly depends on the 
position of a hard wall, the introduction of which is essential for achieving 
an appropriate equilibrium ion configuration. The results of these 
calculations provide a further supoort for our previous argument that the 
MC results for a spherical system must be interpreted as including substan- 
tial size effects. However, it should be noted that the present calculations 
are valid only in the weak-coupling regime and the situation could be quite 
different in the strong-coupling regime. In fact, our variational calculations 



Surface Properties of Finite-Size One-Component Plasma 295 

for F =  10 have predicted very small size dependence of the surface 
energy.(16) 

For a slab, on the other hand, such a finite-size effect is very small if 
the hard wall is introduced at a sufficiently distant position from the sur- 
face. Contrary to the case of a sphere, there is no need of introducing a 
hard wall for a slab and it may be placed at an arbitrarily distant place 
from the surface. Therefore, a numerical simulation for a slab would be 
preferred to that for a spherical system, at least in the weak-coupling 
regime, in order to simulate the planar surface of a semi-infinite system. 
Unfortunately, such a simulation requires much longer computer time than 
that for a spherical system. 
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APPENDIX A: DERIVATION OF EQUATION (17) 

Equation (17) can be derived by using a technique of 
Rosinbergetal.  ~Is) generalized to a spherical system. We start from 
Eq. (12), which may be written 

d Ffi'(u)] 2 Ffi'(u)] 
L 15(u) J + - = 15(u) - 0(.o - ~) L ~(u) J 

(A1) 

We are interested in the ion density which satisfies the physically accep- 
table boundary condition 15'(0)=0 for a spherically symmetric system. 
Then, multiplying both sides of Eq. (A1) by 15'(u)/15(u) and integrating, we 
have 

2L~--(-~)-J +2~o v L~(v)J 

= ~'t~(u) - 15(0) - in [p(u)/p(0)] 

~(~) -15(o )  ln[~(~o)/~(0)] 
(/A ~ UO) 

(A2) 
(u > Uo) 
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where we have used # '(0)= 0. From Eq. (A2) we obtain 

f. 
2 Jov  L#(v)J 

= - I ]~  2 In # (u)+~ u3[1 + In #(Uo)] 

B u~ #(0) + In L #-#(-6)-J] 

where we have used the overall charge neutrality condition 

f~~ du u2[#(u) - l ] + f~o~ du u2~(u) = O (A4) 

The second term on the left-hand side of Eq. (A3) can be integrated by part 
and we have 

T L T ~ J  
2 f~idu[#'(~)] = 2f~, [#'(.)]~ 

= 5 u'~ --u L#--(-Y)J - 5  du u 2 Lp(u)J (A5) 

From (A3) and (A5) we obtain 

i 
f~ u3[1 + #(Uo)] = ~  In 

1 { duF~'(u)]2 F,~(,o)l; 
+ s u  ? 2 f o ' - -  + #(0) +ln  (16) 

, L ? ~ J  LT~0-;J ~ 

From (A2) we have relation 

2t , d. Fy(,/l -- L #-~[#)Ju + #(0) + in L p(O) J = P(/'/I) (A7) 

where we have used #'(Ul)= 0, which can be proved by integrating Eq. (12) 
from 0 to ul and using the charge neutrality condition (A4). Using (A7) in 
(A6) we finally obtain Eq. (17). 
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